Aurora B and Kif2A control microtubule length for assembly of a functional central spindle during anaphase

نویسندگان

  • Ryota Uehara
  • Yuki Tsukada
  • Tomoko Kamasaki
  • Ina Poser
  • Kinya Yoda
  • Daniel W. Gerlich
  • Gohta Goshima
چکیده

The central spindle is built during anaphase by coupling antiparallel microtubules (MTs) at a central overlap zone, which provides a signaling scaffold for the regulation of cytokinesis. The mechanisms underlying central spindle morphogenesis are still poorly understood. In this paper, we show that the MT depolymerase Kif2A controls the length and alignment of central spindle MTs through depolymerization at their minus ends. The distribution of Kif2A was limited to the distal ends of the central spindle through Aurora B-dependent phosphorylation and exclusion from the spindle midzone. Overactivation or inhibition of Kif2A affected interchromosomal MT length and disorganized the central spindle, resulting in uncoordinated cell division. Experimental data and model simulations suggest that the steady-state length of the central spindle and its symmetric position between segregating chromosomes are predominantly determined by the Aurora B activity gradient. On the basis of these results, we propose a robust self-organization mechanism for central spindle formation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SnapShot: Nonmotor Proteins in Spindle Assembly

*DDA3 Human, mouse Spindle microtubules, midbody Bundles microtubules; regulates the spindle pole localized microtubule depolymerase Kif2a Fidgetin Human, mouse (Fignl1), fl y (Fignl1), worm (FIGL-1), frog (Fignl1) Centrosomes Catalyzes turnover of γ-tubulin; contributes to microtubule depolymeriza-tion and chromosome movement Growing microtubule plus ends Stabilizes microtubule plus ends; infl...

متن کامل

Aurora B suppresses microtubule dynamics and limits central spindle size by locally activating KIF4A

Anaphase central spindle formation is controlled by the microtubule-stabilizing factor PRC1 and the kinesin KIF4A. We show that an MKlp2-dependent pool of Aurora B at the central spindle, rather than global Aurora B activity, regulates KIF4A accumulation at the central spindle. KIF4A phosphorylation by Aurora B stimulates the maximal microtubule-dependent ATPase activity of KIF4A and promotes i...

متن کامل

Aurora B helps the central spindle measure up

Aurora B helps the central spindle measure up D uring anaphase, cells assemble a central spindle between the segregating chromosomes. Micro-tubule plus ends overlap in the middle of the cell, creating a spindle midzone that recruits factors involved in positioning the cytokinetic actomyosin ring around the cell equator. Regulating the length and organization of central spindle microtubules is t...

متن کامل

Plk1 and Aurora A regulate the depolymerase activity and the cellular localization of Kif2a.

The microtubule depolymerase Kif2a controls spindle assembly and dynamics and is essential for chromosome congression and segregation. Through a proteomic analysis, we identified Kif2a as a target for regulation by the Polo-like kinase Plk1. Plk1 interacts with Kif2a, but only in mitosis, in a manner dependent on its kinase activity. Plk1 phosphorylates Kif2a and enhances its depolymerase activ...

متن کامل

TPX2 phosphorylation maintains metaphase spindle length by regulating microtubule flux

A steady-state metaphase spindle maintains constant length, although the microtubules undergo intensive dynamics. Tubulin dimers are incorporated at plus ends of spindle microtubules while they are removed from the minus ends, resulting in poleward movement. Such microtubule flux is regulated by the microtubule rescue factors CLASPs at kinetochores and depolymerizing protein Kif2a at the poles,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 202  شماره 

صفحات  -

تاریخ انتشار 2013